PANDA
CLOUDINTERNETPROTECTION

L Simply.. EVolutio

-
YOUR BROWSER WEARS NO CLOTHES: WHY FULLY
PATCHED BROWSERS REMAIN VULNERABLE

@ PANDA CLOUD

INTERMET PROTECTHOMN

PANDA
CLOUDINTERNETPROTECTION

Index

1. Introduction
2. A Little History
3. Naked Browser Attacks
3.1. Coss-Site
3.1.1. A Typical XSS Attack
3.1.2. Impact
3.2. Clickjacking
3.2.1. Impact
3.3. Other Attacks
3.4. Challenges
4. Defense in Depth
4.1. Existing Solutions
4.2. Defending Against Naked Browser Attacks
4.2.1. Monitor
4.2.2. Manage
4.2.3. Merge
4.2.4. Educate
5. Conclusion

6. Panda Cloud Protection Suite

7. References

~ b~ B WN

o W W W W 0 00 00 N N o v v

_ =
N =

PANDA
CLOUDINTERNETPROTECTION

1. Introduction

As users of technology, we have been taught that
the Internet is not always a safe place, but that we
can protect ourselves by patching and hardening
our systems. While patch management and system
hardening have long been the basics for enterprise
security, shifts in technology and attack patterns
are changing the rules. Today it is not just possible,
but common, for a user’s fully-secured machine to
become compromised. At times, this occurs because
of increasingly-sophisticated social engineering
attacks or newly-discovered (so-called zero-day)
vulnerabilities. However, it is increasingly resulting
from exploitation, which does not target a specific
vulnerability on an individual platform but is instead
abusing the functionality and structure of the
Internet itself. This fundamental shift to naked
browser attacks changes everything. Enterprises
must adapt their approach to security to stay ahead
in the never-ending arms race of web security.

We are now firmly entrenched in the era of web
applications. It is no longer simply desirable but
expected that the majority of enterprise
development be architected as web applications,
no matter whether those applications are to be
used internally or externally. This shift has brought
a degree of uniformity to the IT landscape. No
matter what operating system you choose and
regardless of the hardware you select, mobile or
otherwise, it will have a web browser and that
browser will adhere to at least a basic set of
operational standards.

By 2009, a JavaScript engine had become the norm
on even mobile phone browsers, and the majority
of platforms can handle at least the most popular

Rich Internet Application technologies such as
Adobe Flash. This subtle and voluntary
standardization has not only made possible
productive Web 2.0 technologies such as AJAX,
but has unfortunately also created a broad attack
base for those looking to do harm. If attacks can
abuse JavaScript, for example, as opposed to a
specific version of Internet Explorer, the potential
population for attack rises from some finite
percentage of Internet users to virtually 100%.

Attackers once viewed browsers themselves as
targets for attack. Now, browsers are instead
becoming facilitators of attacks. Browsers are simply
doors that enable access to the data the attacker
is after. The difference from earlier attack types is
that vulnerability does not have to be identified
and exploited at the browser.

Today, many attacks work cross-browser and cross-
platform because they don't target the browser
itself; they target functionality that remains the
same regardless of the browser platform. The web
was designed to be open — not secure. This ideal
has not been lost on attackers, so they dedicate
much of their time to bending the rules of the web
to work in their favor. This has in turn led to a
surge in successful attacks on fully-patched
machines. We call such attacks naked browser
attacks because no patch to protect end users is
forthcoming. In this new world order, we must
revisit our approach to web security if we are to
protect ourselves and our businesses effectively.

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

2. A Little History

The attack cycle used to be simple — attackers
would uncover vulnerability within an application
or operating system, exploit it, and continue to do
so until the appropriate vendor released a patch
to address the problem. This is, of course, an
oversimplification of the multitude of variables that
could be involved in any specific instance, but it
does capture the essence of what has driven the
anti-malware industry for some time. One
encouraging change has been the shrinking window
of time during which an attacker could take
advantage of a given vulnerability. A decade ago,
it was not uncommon for enterprises to spend
weeks or even months conducting regression testing
before determining it was “safe” to deploy vendor
patches. This allowed for a substantial period of
vulnerability during which millions of machines
were open to attak.

Fortunately, as understanding of the risks of
exposure and improved processes for disseminating
patches and communicating the risks associated
with individual vulnerabilities has evolved, the
window of opportunity for attack has now shrunk

Vulnerable services on common
Internet servers (web, mail, FTP, etc.)

Server Attacks

to a matter of days or even hours following the
publication of news regarding a given vulnerability.

Looking back over the past decade, as illustrated
in Figure 1, three distinct eras existed for attackers.
Up until 2004, most attacks focused on vulnerable
Internet-facing services such as popular web, mail
and FTP servers. Over time, critical vulnerabilities
in such services were exploited by attackers, which
resulted in fast-spreading worms.

As Web 2.0 became more widespread and server
security improved, attackers switched their target
to browsers. A plethora of vulnerabilities in all
browsers led to increased attacks on end users.
While such attacks generally required a social
engineering component to convince a user to view
a page or click on a link, these challenges were
typically minimal.

Today, we are entering the era of naked browser
attacks. The attacks are naked, in that there is no
specific vulnerability in the browser itself, but the
attacks target end users.

Vuln. functionality
_ (content parsing, URI
] handling, etc.)

Browser Attacks

Abuse of functionality
and web application
‘J vulnerabilities

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 ..

Sadmind Code SOL Blaster
worm Red Slar r

Figure 1 - Evolution of Attacks

Naked Attacks |

Month Orkut Clickjacking
f NOTTY debut
Browser

Bug

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

3. Naked Browser Attacks

Naked browser attacks against secured browsers
succeed either because they abuse trust established
between the browser and a vulnerable web
application or because they abuse functionality of
the web itself. Several types of attack fall into these
categories and, while it is not the aim of this paper
to go into detail on all of them, the process of
cross-site scripting (XSS), which abuses
browser/server trust and click-jacking, leveraging
intended functionality in an unintended way, is
described below.

3.1. Cross-Site

Cross-site scripting remains one of the most
prevalent attack methods that web users face today,
despite its relatively high profile over the past several
years. It has been a fixture in the Open Web
Application Security Project (OWASP) Top Ten' list

of common web application vulnerabilities since
the list was first introduced in 2004. Additionally,
the December 2008 White Hat Website Security
Statistics Report? indicated that two thirds of all
websites probably include XSS flaws. This is a truly
frightening statistic that leaves users at risk each
and every time they browse the web.

XSS illustrates one of the fundamental changes in
security brought about by the interconnected nature
of the web. With XSS, the vulnerability which is
abused resides not within a user’s browser but in
a third party web application which the user
accesses. However, the user is still the victim of the
attack because the browser responds to the injected
malicious JavaScript as it should, by interpreting
the code. In this type of attack, the browser has
no way of distinguishing between intentional user-
supplied content and content which may have been
injected through an XSS attack.

|

.

)

Attacker

Figure 2 - Typical XSS Attack Scenario

3.1.1. A Typical XSS Attack

Figure 2 shows a typical XSS attack scenario. The
following walk-through details why XSS succeeds
without the need for browser vulnerability.

1. Generate Traffic: To be successful, an XSS
attack requires that a user send a specially-

Victim

Vuinerable
Web Site

crafted request to a vulnerable web server. The
request contains embedded active content
(usually JavaScript), which is designed to perform
an action of the attacker’s choosing. Often, the
script will attempt to send the user’s cookies for
the targeted website to the attacker. Sending
spam email is a common way to get victims to
send the predefined request, typically by

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

embedding a link within an HTML-formatted
email message that includes a message to entice
the victim to click on the link.

2. Active Script Sent in Request: If the user
clicks on the link in the spam email message, a
request is sent to the vulnerable web server.
Rather than a simple request for the URL of a
web page, the request will also include the
injected JavaScript, either as parameters in the
URL itself (GET request) or within the body of
the request (POST request).

3. Active Script Embedded in Response: The
vulnerable web page includes functionality which
will accept user-supplied input and include it in
the dynamically-generated page returned to the
user. Such behavior is fine as long as the user-
supplied input is appropriately sanitized to ensure
that the content received was the content
expected. The absence of such controls is what
permits XSS attacks.

4. Active Script Executes: When the browser
receives the response, the page content will
include the injected malicious JavaScript, which
will then be interpreted and acted upon by the
browser.

3.1.2. Impact

While this simple attack scenario involves a single
attacker and victim, XSS is commonly used in more
complex attack scenarios. In January 2008, it was
revealed that attackers had used XSS vulnerability
on the login page of Banca Fideuram, a major
[talian bank, to inject a fake login form within an
IFRAME?. The attack sent a user’s authentication
credentials to an attacker-controlled server and
was particularly dangerous as it was hosted on a
trusted, SSL-protected webpage. XSS attacks are
quickly evolving and are no longer static in nature.
XSS worms have now started to appear on popular
social networking sites such as Orkut* and MySpace>.

It is important to remember that XSS attacks will
succeed regardless of whether users have applied
up-to-date security patches. XSS attacks succeed
because browsers are designed to interpret
JavaScript. With XSS, the attacker is abusing input
validation vulnerability on a web application, and
the user viewing the page becomes the victim. The
idea that users need to surf only ‘reputable’ pages
to remain safe simply does not apply any longer.
Almost all major websites have experienced some
form of XSS vulnerability and, given the social
engineering component of an XSS attack, sites with
high volumes of traffic tend to be targeted in the
most successful attacks.

3.2. Clickjacking

Clickjacking leapt into the media spotlight in the
summer of 2009 when researchers were asked by
Adobe to pull a talk at a well-known security
conference on the subject just days before the
presentation was to be made. This type of attack
layers good content over bad, sprinkled with a little
social engineering to trick users into performing
an action they did not intend.

[http://RealSite.com <o [

Reset Pa;'h_lyro rd

Download Free
Software

Figure 3 — Clickjacking

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

Figure 3 shows an administrative interface permitting
a password reset being layered together with a
fake site, which obfuscates everything. The content
of the fake page is designed to hide what is really
going on and convince an unsuspecting user to, in
this case, reset his password, not download free
software. Successful clickjacking requires the
following three components:

1. Embedded Content: The targeted action
(e.g. password reset), which is on a page not
controlled by the attacker, is embedded within
a page controlled by the attacker. This is typically
accomplished by using an IFRAME on the
attacker-controlled page. This is why ‘frame
busting’ code — which prevents content from
being displayed in an IFRAME - is commonly
recommended as a server-side defense against
clickjacking.

2. Obfuscation: The third-party content,
including the password reset button, will not
be visible despite being on the page, because
its opacity value is set to zero. Opacity is used
to adjust the transparency of an object.

3. Layering: Attacker-controlled content is
actually layered below the third party content
and positioned to ensure that the two buttons
line up precisely. However, the ‘Go’ button for
downloading software is visible instead of the
‘OK’ button for the password reset due to the
opacity settings, as noted above. Layering is
accomplished by leveraging z-index properties,
which set the depth value of web page elements.
In this case, the third-party content would have
a higher z-index value than the attacker-
controlled content. The result is that, although
the victim sees the ‘Go’ button, what'’s actually
clicked is the ‘OK’ button.

3.2.1. Impact

Clickjacking is an enabler for social engineering
attacks. As with XSS attacks, users will not fall
victim simply by viewing a malicious web page.
Instead, they must click on a link to trigger the
attack. By combining a variety of legitimate HTML
formatting techniques, clickjacking facilitates the
necessary social engineering by making it appear
to the end user that they are clicking on a link
other than the one the browser interacts with.
Once an attacker can influence the mouse clicks
made by a user, the potential attacks that can be
conducted are virtually limitless. Having a user
unknowingly upload data to an attacker-controlled
location, for example, can compromise privacy and
breach compliance regulations. Authentication can
be bypassed by adding a rogue user account or
lowering predefined security settings. Complete
system compromise can be achieved if a user’s
mouseclicks download a malicious binary. In short,
the potential for damage in a successful clickjacking
attack is limited only by the imagination of the
attacker.

Adobe was heavily affected by clickjacking, not
because they produce a web browser that permits
it but because the Flash Player Settings Manager
could be abused by it. Settings for Flash Player are
managed by accessing embedded Flash content
on an Adobe web page®. In the Website Privacy
Settings tab (see Figure 4), it is possible to set a
site’s permissions so that the site is always trusted
and can access a machine’s webcam and
microphone without first requesting permission.

By obfuscating this console with fake content and
social engineering a victim into clicking on a few
specific areas of the screen, an attacker could hijack
a the webcam and microphone of an unsuspecting
victim and physically spy on them. This type of
attack was demonstrated on the Guya.net blog

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

and was the catalyst that ultimately forced the
public dissemination of clickjacking details’. The
Guya.net proof of concept created a game,
implemented using JavaScript, which asked a user
to follow a button moving around the screen and
click on it. While some clicks were innocuous,
others were altering the user’s Flash Manager
settings and ultimately selecting ‘Always Allow’,
as shown by the arrow in Figure 4.

Adobe Flash Player™ Settings Manager 6
®KeE€ B >
Website Privacy Settings
For webs16 you have akoady vialod. view of change the pivacy
sottings fofaccoss 10y our camor and / or microphone. |
) L Alway's asik
OO Aways aliow
)& Always deny [_Doloto wobsike || Deloto sl stes |
Vislted Wabasitos
Poiv acy Wabelan; Used Limk
I ¢ wwrw v irgingalactic com 1KB 100 KB ii
| & menb-ormedia. ms n. oom 1 KB 100KB
- VoD GOk tam 1KB 100KB | |
| Socuments scribd.com 2KB 100KB ||

Figure 4 - Adobe Flash Player - Website Privacy Settings

While Adobe has addressed this specific attack, by
adding framebusting code to the Settings Manger,
clickjacking still works just fine in the majority of
modern browsers. It works because IFRAMEs and
properties such as z-index values and opacity are
standards that are respected by most common
browsers. Individually, they are powerful tools,
which allow for the design of some truly impressive
web applications. However, when combined and
used by a malicious attacker, they can be made
into a viable attack vector. Once again, this type
of attack does not leverage individual vulnerabilities
but instead abuse intended functionality by using
it in ways other than it was intended.

3.3. Other Attacks

XSS and clickjacking attacks are certainly not the
only client-side attacks that don’t rely on client-
side vulnerabilities, simply two of the better-known.
There are numerous other types of attack with
similar characteristics; cross-site request forgery,
content spoofing, URL redirection, HTTP response
splitting, and others all demonstrate elements of
naked browser attacks. Moreover, many of these
attacks represent emerging issues which are just
starting to be seen in wide-ranging attacks.

3.4. Challenges

You can’t stop what you don’t know about. An
attack that blends in with legitimate web traffic
will always be harder to detect. A browser exploit
lends itself to traditional signature-based detection,
as an attack generally requires that anomalous
traffic be sent. In the case of a buffer overflow in
a web browser, web content will need to be
created which includes data to trigger the attack,
shellcode to execute once control has been gained
and some data for padding to ensure that everything
lands in the right place. None of this is standard
content on a web page, so it’s relatively easy to
detect. Clickjacking, by contrast, is much harder
to detect using signatures, because b none of the
components of clickjacking is nefarious individually.
All are legitimate properties available to web
application developers and will commonly be seen
on a variety of web pages. It is the combination of
a variety of legitimate attributes which makes an
attack possible and the likelihood of a single
preventative silver bullet remote.

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

4. Defense in Depth

Defending against attacks which succeed regardless
of diligent patching and hardening browsers is an
unnerving prospect. Tightening patch management
procedures had been set as a first line of defense,
but here are increasing volumes of attacks that
bypass the entire process. What's worse is that
naked browser attacks typically involve elements
of social engineering and it is difficult, if not
impossible, to prevent an attack that involves an
employee serving as an unknowing accomplice.

Almost any discussion of how to defend against
attacks such as XSS or CSRF will concentrate on
how to secure the web application, not how to
protect the browser affected by the attack. The
focus of the majority of our security capital to date
has been on defending servers, not browsers.
However, typical enterprises have hundreds of
browser installations for every server, and many of
those browsers reside on laptops that leave the
confines of the enterprise on a regular basis.
Vulnerability is exacerbated by the fact that
individuals with limited security knowledge operate
those browsers. When looking at enterprise security
from that perspective, it is easy to see why priorities
need to be shifted.

4.1. Existing Solutions

Browser patches cannot protect against these
attacks because the browsers themselves are not
the point of vulnerability; they are behaving as
intended. That said, there are some client-side
applications that can help to protect browser abuse.
, for example, is an excellent extension for
Firefox and other Mozilla-based browsers that
permits granular control over the execution of active
content such as JavaScript, Java, Flash, and other
plug-ins. It also includes specific controls to identify
and block XSS and clickjacking attacks.
Administrators should be aware that NoScript is

designed for sophisticated users and many of the
options may be confusing to an average user. While
some administrators recommend disabling script
engines altogether within browsers, this is no longer
a viable option given the heavy reliance on JavaScript
by modern web applications.

In the long run, it is to be hoped that browser
vendors will begin to expand security functionality
to combat against attacks despite the fact that the
vulnerabilities leverage weaknesses in web
applications as opposed to the browsers themselves.
Microsoft’'s Upcoming Internet Explorer 8, for
example, will include functionality to detect reflected
XSS attacks®.

Intrusion Detection/Prevention (IDS/IPS) systems
often have signatures to detect attacks such as
XSS, but they tend to identify exploitation of specific
popular web applications. As noted earlier,
signature-based detection of the attacks discussed
in this paper is not a trivial matter, as the actual
attacks can take many forms. Signatures that are
too specific will miss the attacks, and those that
are too generic will result in time-wasting high false
positive rates.

4.2. Defending Against Naked
Browser Attacks

Not surprisingly, there is no silver bullet to protect
against naked browser attacks. Patches cannot
address the weaknesses that permit such attacks
and, with plenty of finger-pointing going on to
place blame elsewhere, quick fixes will not be
forthcoming. With that in mind, it is important that
enterprises implement a range of detection and
prevention measures to combat naked browser
attacks.

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

4.2.1. Monitor

Effectively monitoring and logging activity on the
network can ensure that naked browser attacks
are isolated for follow-up when they do occur.
Logs should be consolidated and not just maintained
separately at each individual web gateway, enabling
incidents to be correlated across physical locations.
Web logs can be analyzed for anomalous traffic
patterns such as large spikes in traffic to a particular
page as attackers herd users to a particular attack
target location. Sudden drops in expected traffic
volume could also raise suspicion, as infected
machines may be blocked from going to particular
sites. This often happens in order to prevent the
downloading of new anti-virus signatures that
might identify an infected machine. But monitoring
alone is not sufficient. Someone must own the
process to ensure that that reports are produced,
analyzed and escalated when necessary.

4.2.2. Manage

A common mantra in security is that users should
only be given the appropriate level of access
necessary to do their job. Why is it then that when
it comes to web access, enterprises typically let
users do whatever they want, with the possible
exception of blocking objectionable content through
URL filtering? Web applications have been given
that name for a reason — they are applications and
as such access should be restricted based on
functionality, not just destination. For example,

while it may be fine for users to view content on
Facebook, it's probably not appropriate to permit
unfettered uploading of content in order to protect
against data leakage. Look for solutions that enable
control over not just where users are going, but
also what they're doing.

4.2.3. Merge

There are a number of commercial and free data
feeds (e.g. Phishtank, Google Safe Browsing,
OpenDNS, etc.) that identify potentially malicious
content. Such feeds can be incorporated into web
filtering solutions to block access to sites that may
involved in browser-based attacks such as phishing
scams or botnet attacks. When making use of such
content, it is important to also regularly review
metrics to ensure that the lists are adding value
and not creating unnecessary levels of false positives.

4.2.4. Educate

User education should not be overlooked. While
user diligence will never replace technical control,
users should be provided with the knowledge not
just of how to avoid attacks but also how to escalate
issues when needed. When establishing programs,
ensure that education is delivered on a continual
basis and in a variety of formats. People learn in
different ways but repetition is essential if the
knowledge is to be retained.

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

5. Conclusion

Attackers once focused their efforts on targeting
corporate servers, looking for gaping holes that
would give them the keys to the kingdom. As
enterprise servers became more secure, the clients
became the target, especially web browsers - which
have a questionable security track record at best.
Today, many of the attacks targeting browsers are
naked attacks, requiring no browser vulnerabilities
to be effective and thus immune to standard
protective measures like patching. The
interconnected reality of the web ensures that risk
is not isolated between web browser and server.

Some of the attacks discussed in this paper expose
user data due to vulnerabilities in the web
applications that they have been exposed to. Other
attacks simply abuse intended functionality by using
it in an unintended way. For this reason, an
increasing number of attacks on web browsers will
succeed, even when the browser in question is fully
patched and hardened. As a result, enterprises
must take revisit how they implement web security.
Patch management is no longer enough to protect
the browser and prevent unauthorized access to
the keys to the kingdom.

10

PANDA

SECURITY

PANDA
CLOUDINTERNETPROTECTION

6. Panda Cloud Protection suite

Panda Cloud Internet Protection is part of the Panda
Cloud Protection suite which is a complete SaaS
security solution that protects all the main threat
entry points: endpoint, email and Web traffic,
against malware, spam, phishing, cross-site scripting
and other advanced Web 2.0 attacks, through a
light, secure and simple solution.

As the security suite is based in the cloud it offers
maximum protection, while optimizing costs and
productivity. Startup is immediate and the solution
is simple to manage through an intuitive Web
console.

The Panda Cloud Protection suite harnesses the
power of Collective Intelligence. Panda's cloud-
based Collective Intelligence leverages 21 terabytes
of knowledge and experience drawn directly from
millions of users to deliver comprehensive,
instantaneous, non-intrusive real-world protection
against known and unknown malware to all users.

Panda Cloud Protection leverages the power of the
cloud to not only provide up-to-the-minute
protection against known and unknown threats
but also to streamline the delivery of that protection
through the anytime, anywhere power of the Cloud
Management Console.

PANDA CLOUD

WEB MAIL
& BACKUP

CONTENT
FILTERING

ANTI-SPAM

@
INTELIGENCE

ANTIVIRUS
& THREATS
PROT

WEB
ACCESS

CONTROL

DATA LOSS
PREVENTION

SOFTWARE-AS-

ANTIVIRUS & ADVANCE
THREATS PROTECTION

CENTRALIZED
MAMAGEMENT
& REPORTING

MALWARE
AUDITS

A-SERVICE

PERSOMAL
FIREWALL

o

PANDA

SECURITY

11

PANDA
CLOUDINTERNETPROTECTION

7. References

1.
http://www.owasp.org/index.php/OWASP_Top_Ten_Project

sz"[tp://vaw.whitehatsec.com/home/resource/stats.html

ﬁ;[tp://news. nefcraft.com/archives/2008/01/08/italian_banks_xss_oportunity_seized_by_fraudsters.tml
fwr;[tp://www.washington post.com/wp-dyn/content/article/2007/12/19/AR2007121900781_pf.html
E"[tp://en .wikipedia.org/wiki/Samy_(XSS)
E;[tp://www.macromedia.com/support/documentation/en/ﬂashpalyer/help/settings_manager. html
Z;[tp://ha.ckers.org/blog/20081 007/clickjacking-details/

8

http://msdn.microsoft.com/en-us/library/cc004337(VS85).aspx

12

PANDA

SECURITY

PANDA SECURITY

EUROPE USA

Ronda de Poniente, 17 230 N. Maryland, Suite 303

28760 Tres Cantos. Madrid. SPAIN P.O. Box 10578. Glendale, CA 91209 - USA
Phone: +34 91 806 37 00 Phone: +1 (818) 5436 901

www.pandasecurity.com

© Panda Security 2010. All rights reserved. 0710-WP-Your browser wears no clothes

FPANDA

SECURITY

www.pandasecurity.com

